
Appeared in IEEE International Conference on Robotics and Automation (ICRA’99), Detroit, MI, May 10-15, 1999.

Finalist for Best Conference Paper.

An Autonomous Sensor-Based Path-Planner for Planetary
Microrovers

S. L. Laubach J. W. Burdick
Jet Propulsion Laboratory Department of Mechanical Engineering

California Institute of Technology California Institute of Technology
Pasadena, CA 91109 Pasadena, CA 91125

Abstract

With the success of Mars Pathfinder’s Sojourner
rover, a new era of planetary exploration has opened,
with demand for highly capable mobile robots. These
robots must be able to traverse long distances over
rough, unknown terrain autonomously, under severe
resource constraints. Based on the authors’ firsthand
experience with the Mars Pathfinder mission, this pa-
per reviews issues which are critical for successful au-
tonomous navigation of planetary rovers. We next re-
port on the “Wedgebug” algorithm for planetary rover
navigation. This algorithm is complete, correct, re-
quires minimal memory for storage of its world model,
and uses only on-board sensors, which are guided by
the algorithm to efficiently sense only the data needed
for motion planning. The implementation of a version
of Wedgebug on the Rocky7 Mars Rover prototype at
the Jet Propulsion Laboratory (JPL) is described, and
experimental results from operation in simulated mar-
tian terrain are presented.

1 Introduction

The recent Mars Pathfinder experience vividly il-
lustrated the benefits of including a mobile robotic ex-
plorer on a planetary mission. Previous forays allowed
scientists to explore planets remotely, via an orbiter,
or were limited to a single site for study with a lander’s
instruments. However, the Sojourner rover, carried to
Mars by the Pathfinder spacecraft, was able to roam
and to place its instruments (a spectrometer and low-
mounted cameras) directly on or near objects of inter-
est. In all, the Sojourner rover ranged over an area
roughly 20 meters square, conducted soil experiments
in a variety of terrains, and sampled the spectra of 16
distinct targets [6]. Missions currently being planned
call for new rovers to be sent to Mars at launch oppor-
tunities in 2001, 2003, and 2005, as well as a nanorover
to be sent to the surface of an asteroid in 2003. Many
of these missions require the rovers to operate for up

to a year, compared with the 83 sols (martian days)
of operation for the Sojourner rover. The rovers are
also required to traverse vastly greater distances: up
to 100 m/sol, as opposed to Sojourner’s 104 m/83 sols.
In addition, lessons learned from Mars Pathfinder in-
dicate a need for significantly increased rover auton-
omy in order to meet mission criteria, within severe
constraints including limited communication opportu-
nities with Earth, power, and computational capacity.

1.1 Motion Planning on Mars

A key advance in functionality required for plan-
etary rovers is greater navigational autonomy. Each
rover will be working in unknown, rough terrain. (The
resolution expected from Mars orbiters, for example, is
roughly 300 meters/pixel, with only isolated “postage
stamp” regions achieving the highest resolution of 1.4
m/pixel [7]. Orbiter camera pointing limitations pro-
hibit attempting to use these highest-resolution im-
ages for rover navigation or localisation.) Given a dis-
tant (i.e., not immediately visible by the rover’s sen-
sors) goal designated by Earth-based operators, the
rover must use its sensors to navigate safely and au-
tonomously to that goal. Rather than address all of
the issues which arise in this complex problem, this pa-
per will focus on the aspects relevant to autonomous
path planning.

Useful motion planners for planetary rovers have
several key characteristics: they must assume no prior
knowledge of the environment, must be sensor-based,
robust, complete and correct. They must also operate
under severe constraints of power, computational ca-
pacity, and the high cost of flight components, which
translates into limited memory available on-board the
rover. Due to dead reckoning errors, slippage on
rough/loose substrate, nonholonomic fine-positioning
constraints, and constraints on mission time available,
using rover motion to augment sensing is costly. Si-
multaneously, limited memory, computational capac-
ity, power and time available all argue for minimis-

ing the amount of data sensed and processed. Thus,
a practical motion planner must utilise the available
sensing array in a scheme which efficiently senses only
the data needed for motion planning, requires minimal
memory to store salient features of the environment,
and conserves rover motion.

2 Relevant Work

Much of the body of work in motion planning can be
divided into three major categories: “classical” path
planners, heuristic planners, and “complete and cor-
rect” sensor-based motion planners. “Classical” plan-
ners assume full knowledge of the environment, and
are complete. Heuristic planners, generally based upon
a set of “behaviours,” can be used in unknown envi-
ronments but do not guarantee the goal will ever be
reached, nor that the algorithm will halt. (A more
detailed discussion is presented in [5].) The third cat-
egory, which relies solely upon the rover’s sensors and
yet guarantees completeness, is most relevant to the
problem of autonomous planetary motion planning.

Two distinct approaches to such planners have been
explored, both of which adapt classical methods to a
local sensed region. One set of methods incrementally
builds “roadmaps” within the visible region, such as
Choset’s HGVG [2], Rimon’s adaptation of Canny’s
OPP [1], and the “Tangent Bug” algorithm of Kamon,
Rivlin, and Rimon [3]. The other approach springs
from approximate cell decomposition, filling in a grid-
based world model as more information is gathered,
exemplified by Stentz’ D* algorithm [9].

The above methods have each been developed to dif-
fering degrees in their application to real systems. For
example, the sensor-based version of OPP is currently
strictly theoretical, owing to the difficult-to-implement
nature of the sensors required. The HGVG, on the
other hand, has been implemented on a mobile robot
using range sensors. Choset’s planner produces paths
which are maximally distant from obstacles, a plus for

Figure 1: Typical terrain encountered on Mars by the
Sojourner rover. The intrepid mobile explorer is 68cm
long by 48cm wide, and stands 28cm tall.

Figure 2: Rangemap of a single image from a stereo
pair. This image also shows obstacles detected within
the visible region, and a path generated by the im-
plementation of the “RoverBug” algorithm on Rocky7
(see Section 5).

rover safety. However, it works best in contained envi-
ronments with well-defined corridors; a description not
applicable to the typical martian environment (Fig. 1).

The D* algorithm and Tangent Bug both are useful
in unbounded environments. In addition, they both
produce “locally optimal” solutions, that is, the re-
sultant paths are the shortest length possible given
the use of solely local information. D* has in particu-
lar been implemented on a real world system (an au-
tonomous HMMWV driven in a slag heap near Pitts-
burgh). However, the grid-based world model requires
a significant amount of memory for storage, and the al-
gorithm’s completeness depends entirely upon the pre-
cision of its world model, which is determined by cell
granularity.

Tangent Bug provides the motivation for the work
presented here. Its world model is streamlined, con-
sisting only of sensed obstacle boundary endpoints.
The planner itself consists of two “modes”— motion-
to-goal, and boundary following—which interact in-
crementally to ensure global convergence (if the goal
is reachable), and which “fail gracefully” if the goal
is found to be out of reach. Thus, the algorithm is
memory-efficient, fairly robust, and conserves robot
motion. However, some of its assumptions do not ap-
ply to the “rover problem” of navigating in planetary
terrain. For example, Tangent Bug assumes that the
robot is modelled as a point, and that obstacles block

both motion and sensing. In addition, Tangent Bug
assumes that the robot’s sensor provides an omnidi-
rectional view.

The current scenario for a rover sensing system con-
sists of a stereo pair of cameras mounted on a pan-able
mast. Typically, these cameras have a 30◦ to 45◦ field
of view (FOV), and the “visible region” connected with
these sensors sweeps out roughly a wedge, with limited
downrange radius R due to both viewing angle (tilt)
and feature resolving ability. (See Fig. 2 for an exam-
ple of data from such a sensing array.) Camera pixels
imaging features closer to the horizon (hence farther
away) have a larger footprint than pixels imaging the
foreground; simultaneously, obstacles further away are
apparently smaller in relative size. These two proper-
ties combine to limit the range at which a stereo pair
can resolve obstacles of a given height, for instance.
From the discussion in Section 1.1, it is clear that it is
important to not simply pan the sensor array and ob-
tain an omnidirectional view at every step. Rather, the
planner should be able to identify the minimal num-
ber of sensor scans needed—and which specific areas
to scan—to proceed at each step, while avoiding un-
necessary rover motion. Thus, we have developed the
“Wedgebug” algorithm to address the shortcomings of
Tangent Bug, as a step towards a more practical path
planner for flight microrovers. Wedgebug is complete,
correct, and relies solely upon the robot’s sensors. The
implementation discussed in Section 5 relaxes the as-
sumption that the rover is a point robot. Perhaps
most importantly, Wedgebug deals with the limited
FOV of flight rovers in a manner which is efficient and
minimises the need to sense and store data, using au-
tonomous gaze control.

Section 3 presents the Wedgebug algorithm in some
detail. Section 4 develops the proof of completeness
for this motion planner. Section 5 describes briefly
the current implementation of an extended Wedgebug
on a prototype microrover at JPL, with experimental
results. Section 6 contains concluding remarks.

3 The Wedgebug Algorithm

The basic assumptions of the Wedgebug algorithm
are as follows: The rover is modelled as a point robot
in a 2D binary environment (i.e., every point in the
environment is either contained within an impassable
obstacle, or lies in freespace). Obstacle boundaries
block sensing as well as motion. (In Section 5, we dis-
cuss how the implementation deals with the fact that
the real robot is not a point robot, and that obstacles
do not necessarily block sensing.) The rover’s sensors,
from position x, detect ranges within a wedge W (x,~v)

R

W
α

 robot
sensor

vi
→

i

C
∂Wi

Figure 3: Anatomy of a wedge.

of radius R, which sweeps out an angle 2α (> 0) and
is centered on the direction ~v. Define C as the arc
boundary of W (x,~v) at radius R, and ∂W (x,~v) as
the union of the two bounding rays of W (x,~v) (Fig.
3). We further define the “interior” of W (x,~v) as
int(W (x,~v)) = W (x,~v) − ∂W (x,~v) (N.B., an “inte-
rior” point may lie on C). Let d(a, b) be the Euclidean
distance between points a and b.

Wedgebug, like Tangent Bug, is based upon two
modes which interact to ensure global convergence:
motion-to-goal (MtG) and boundary following (BF).
However, each mode is more finely divided into com-
ponents that improve efficiency and handle the lim-
ited FOV. A high-level sketch of the operation of the
Wedgebug algorithm follows: At the beginning of the
path sequence, an initialisation step records the pa-
rameter dLeave = d(A, T), where A is the robot’s ini-
tial position, and T is the goal. This parameter marks
the largest distance the robot can stray from T during
an MtG segment.

MtG is typically the dominant behaviour. It basi-
cally directs the robot to move towards the goal using a
local version of the tangent graph, restricted to the vis-
ible region (Fig.4). The tangent graph (also known as
the “reduced visibility graph”) consists of all line seg-
ments in freespace connecting the initial position, the
goal, and all obstacle vertices, such that the segments
are tangent to any obstacles they encounter [4]. Let
LTG(S) be the local tangent graph within the set S, de-
fined as the tangent graph restricted to S. In our case,
obstacle boundaries appear as continuous contours in
the range data; the endpoints of these contours are
called the “obstacle vertices”. Each endpoint e corre-
sponds to a discontinuity in the range data or to an
intersection of a contour with ∂W or C.

MtG works roughly as follows: The robot (at po-
sition x) first senses a wedge, W0 = W (x,~v0), where
~v0 = −→xT is the vector from x to the goal. (All wedges
in the subsequent discussion are assumed to subsume
a half-angle α.) The planner constructs LTG(W0). If
there are no visible obstacles intersecting the ray ~xT ,
the planner adds a node Tg to LTG(W0) at a dis-
tance R from x along ~xT , so LTG(W0) contains a

robot

obstacle

goal

LTG nodes

LTGF

v
→

0

Figure 4: LTG calculated within W (x,~v0).

path directly towards T . The planner then searches
a subgraph, G1(W0) = {V ∈ LTG(W0)|d(V, T) ≤
min(d(x, T),dLeave)}, for the optimal local subpath.
Using the criterion discussed in Section 3.1, the rover
may scan additional wedges as needed, and constructs
the LTG in the conglomerate wedge W (x) (see Sec-
tion 3.1). After executing this subpath, MtG begins
anew. This behaviour is continued until either the
goal is reached, T is deemed unreachable, or the robot
encounters a local minimum in d(·, T). In the lat-
ter case, the planner switches to BF . The objective
of this mode is to skirt the boundary of the blocking
obstacle (the obstacle whose boundary contains the lo-
cal minimum), still calculating LTG(W0), until one of
two events occur: either the robot completes a loop, in
which case the goal is unreachable and the algorithm
halts; or LTG(W0) contains a new subpath toward T .
The next two sections describe the MtG and BF modes
in more detail. (Of note, no information, other than
explicitly recorded points and parameters, is passed
between steps.)

3.1 Motion-to-Goal

The basic idea of MtG is for the robot to progress
toward the goal in such a manner that its distance to T
is nonincreasing. During this type of behaviour, there
are two situations: either the robot can move directly
through freespace toward the goal (“direct mode”), or
it must skirt the boundary of a blocking obstacle while
still decreasing its distance from T (“sliding mode”).
Further, “sliding mode” contains another submode,
“virtual MtG”, in order to improve efficiency. That is,
during normal MtG , the planner scans a single wedge
view toward the goal to determine whether a path ex-
ists. If it is apparent that more information could lead
to a shortcut around an obstacle boundary, “virtual
MtG” scans additional wedges in order to determine
the appropriate shortcut, and therefore improve effi-
ciency.

The first actions taken in a new MtG step are to
scan W0, construct LTG(W0), and search G1(W0). It

can be shown that the shortest possible path will pass
through either Tg (if Tg ∈ G1(W0)), or an endpoint e of
a blocking obstacle (which intersects the ray −→xT); call
the point through which the shortest path passes the
focus point, F (Fig 4). The focus point (fixed for each
step) serves as the goal for each MtG step—the sub-
path for the current MtG step is precisely xF . Its po-
sition within the robot’s FOV also determines whether
additional wedge views are needed.

If F = Tg, the robot simply executes the subpath to
F , and starts the next MtG step. We call this case a
direct MtG segment, since the robot proceeds through
freespace directly towards the goal.

Otherwise, the robot has encountered a blocking
obstacle, O, which it must skirt in order to continue
towards the goal, in which case MtG enters “sliding
mode”. To ensure that the robot does not backtrack,
the planner establishes a traversal direction—call it
positive (ρ+)—upon first sensing O. Thereafter, the
robot must satisfy the sliding condition: it must tra-
verse in the positive direction around O, and may not
change direction while following a single (sensed) ob-
stacle’s boundary. In subsequent MtG steps, after de-
termining the shortest path in G1 ∪ T , F is chosen
as follows: If F /∈ ∂O, or if F is the sensed endpoint
of ∂O in the positive direction (e+), F is unchanged.
Otherwise, F is changed to e+. At the start of “slid-
ing mode”, the planner also records Vloop, the sensed
endpoint of ∂O in the negative direction (e−). “Sliding
mode” ends when (1) the blocking obstacle is changed
(including the case when F = Tg), (2) the planner
switches to BF , or (3) the robot detects that it has
circumnavigated O. Below, we delineate the actions
of “sliding mode”, as determined by the position of F
within the visible region:

Case 1: If F ∈ int(W (x,~v0)), there are two cases to
consider: either the ray −→xF is tangent to O, or another
obstacle obscures the blocking obstacle’s boundary. In
the first case, after recording ρ+ and Vloop, the robot
simply executes the subpath to F , and starts the next
MtG step. This is the case illustrated in Fig. 4. (For
purposes of the proof to be given later, the robot never
lies directly on ∂O, but rather remains a distance ε
away.) In the second case, it is possible that the second
obstacle is hiding a local minimum. We will return to
this case later.

Case 2: If, on the other hand, F ∈ ∂W (x,~v0),
the planner must inspect the tangent to ∂O at F , ~tF ,
to determine if the robot will be “sliding around” the
blocking obstacle, or if it has possibly encountered a
local minimum in d(·, T). If ~tF · −→xT ≤ 0, the robot
would need to increase its distance from the goal to

goal

robot

W
W

goal

robot

W

F

F

0 0
1

Figure 5: “Virtual MtG .” The figure on the left de-
picts the first part of an MtG step. The nodes of
LTG(W0) are marked. F satisfies the conditions for
“virtual MtG ,” so the robot scans W1 (right). Now,
F ∈ int(W0 ∪W1), so “virtual MtG” ends.

skirt the obstacle on the subsequent step. So, if al-
lowed, the planner changes F to the opposite sensed
endpoint of ∂O, and tests the new F ′. Changing F is
not allowed if (1) F has already been changed once at
x, or (2) the change would violate the sliding condi-
tion. If then F ′ ∈ ∂W (x,~v0) and ~tF ′ · −→xT ≤ 0 (or F
cannot be changed), the robot has encountered a local
minimum in d(·, T). Thus, the planner switches to BF
(described in Sect. 3.2).

In the case that F ∈ ∂W (x,−→xT), but ~tF ·−→xT > 0, the
robot must “slide around” the obstacle while progress-
ing toward T . Unfortunately, being close to an obsta-
cle restricts the robot’s already-limited view and can
result in tiny incremental steps. Thus, in order to effi-
ciently acquire data from the robot’s current position
and to avoid as much inefficient motion as possible,
we add a submode of MtG , called “virtual MtG”. The
object of “virtual MtG” is to sense additional wedges
in the direction the robot will “slide around” the ob-
stacle, and to generate a local shortcut in the robot
path.

The “virtual MtG” mode directs the sensor to pan
towards F (defining this direction of rotation positive,
if not already defined), and to sense the wedge W1 =
W (x,~v1), where ∠(−→xT ,~vk) = 2kα (that is, W1 abuts
W0 at F). Let the conglomerate wedge W = W0 ∪W1

(in general, at each position x, W =
⋃sensed

Wk(x)).
The planner computes G1(W), and finds the new focus
point F (according to whether the planner is in “slid-
ing mode”). Let ∂W

+
be the bounding ray ~r such

that ∠(−→xT ,~r) > 0 (i.e., the edge of W in the positive
direction). If F ∈ ∂W

+
, “virtual MtG” is repeated.

This mode ends if one of three conditions is met:

1. F ∈ int(W), in which case the robot has found a
suitable shortcut. The robot records ρ+ and Vloop
(if needed), executes the subpath to F , and begins
a new MtG iteration.

2. ∠(xT , ∂W
+

) ≥ π/2, which means that the rover
is sensing part of a region not useful for MtG ,
since G1 contains only nodes closer to T than the
robot’s current position.

3. ~tF · −→xT ≤ 0, which indicates that the obstacle
boundary is curving back toward x; that is, the
robot can no longer “virtually slide” in this direc-
tion without losing ground.

In fact, (2) =⇒ (3). In these cases, if allowed, the
robot changes F , and (if F ′ meets the conditions),
attempts “virtual MtG” again. If the second attempt
fails, the robot has encountered a local minimum in
d(·, T), and the planner switches to BF .

We now return to the case F ∈ int(W (x,~v0)),
where a second obstacle obscures the blocking obsta-
cle boundary. As noted, the obscuring obstacle may
be hiding a local minimum. Thus, as in the case when
F ∈ ∂W (x,−→xT), we check the tangent to ∂O at F . If
~tF · −→xT > 0, “virtual MtG” can’t help, so the planner
records ρ+ and Vloop, executes the subpath, and begins
another MtG iteration. If ~tF · −→xT ≤ 0, we change F
(if allowed), and check the new F ′. If on the second
time around, F ′ ∈ ∂W (x,~v0) or the boundary at F ′ is
similarly obscured, and ~tF ′ · −→xT ≤ 0 (or F cannot be
changed), the robot has encountered a local minimum
and the planner switches to BF .

3.2 Boundary Following

The basic idea of BF is to skirt the blocking obsta-
cle until progress can be made once more toward the
goal. As with MtG , BF is split into two submodes.
“Normal BF ” uses two wedge views, one toward the
goal and one in the direction of travel around the ob-
stacle boundary, to determine whether a clear path to-
wards the goal exists while the robot circumnavigates
the obstacle. Immediately after a switch from MtG to
BF , however, the robot must determine its direction
of travel around O, the blocking obstacle. If ρ+ is not
defined, “virtual BF ” is used to take full advantage of
the information which can be gleaned at the current
distance from the obstacle (arguably more than from a
closer range), to choose this direction efficiently. (The
primary motivation for “virtual BF ” is the idea that it
is less costly for the robot to swivel its sensors than for
the robot to actually move.) In essence, the robot will
swing its sensor array back and forth in a prescribed
manner, to search for the “best” place to move and
begin “normal BF ”.

More precisely, the robot initially scans the wedge
W1 = W (x,~v1), where in this case the positive direc-
tion is chosen by comparing the tangents to ∂O at

goal

robot

W0

goal

robot

W
W0

1

goal

robot

W
W0

1

-1W
V

Figure 6: “Virtual BF .” The figure on the left depicts the first part of a “virtual BF ” step. The nodes of
LTG(W0) are marked with black circles. Since @V ∈ int(LTG(W0)), the robot scans W1 (center). Again,
@V ∈ int(LTG(W0 ∪W1)), so the robot scans W−1 (right). Now, V ∈ int(W0 ∪W1 ∪W−1), so “virtual BF ” ends.

the intersection with ∂W0; that is, if ~tl,~tr are the two
tangents (at intersection points el (left) and er (right),
respectively), then if ~tl ·~v0 ≥ ~tr ·~v0, then ∠(~v0,−→xel) > 0.
As before, let W =

⋃sensed
Wk(x). The planner com-

putes LTG(W). If ∃ a node V ∈ LTG(W) ∩ ∂O such
that V ∈ int(W), the robot moves to V and begins
“normal BF ”, first recording two features: dreach, the
closest distance to T encountered so far on ∂O, and
Vloop = ∂W

− ∩ ∂O (as well as ρ+). If there is no
such node V , the planner directs the sensor to scan
W−1 = W (x,~v−1), constructs W = W0 ∪W1 ∪W−1,
and searches the freshly expanded LTG(W). In this
manner, the robot scans back and forth until a suit-
able node is found, then travels there to begin “normal
BF .”

“Virtual BF ” ends when one of three events are
detected:

1. ∃V ∈ LTG(W) ∩ ∂O such that V ∈ int(W). The
robot moves to V , and begins normal BF .

2. The latest scanned wedge overlaps a previously
scanned region (i.e., |∠(~v0, ~vlast)| > π). In this
case, the robot is trapped by an encircling obsta-
cle, and the algorithm halts.

3. ∃V ∈ LTG(W) with V ∈ int(W), but V /∈ ∂O. In
this case, an obstacle obscures the blocking obsta-
cle boundary. We call V a “framing point,” since
it “frames” the sensed extent of ∂O. If only one
“framing point” is in view, the robot scans once
more in the opposing direction, and then no mat-
ter the outcome, “virtual BF ” ends. If a node as
in item (1) is found, the robot moves there and
begins normal BF . Otherwise, the rover moves to
the point on ∂O just before V . If there are two
“framing points”, Vl and Vr, the rover moves to
∂O near Vl iff |∠(~v0,

−→
xVl)| > |∠(~v0,

−→
xVr)|). At this

point, the rover begins normal BF .

In normal BF , at the start of each step, the robot

senses W0, and searches G1(W0). BF exits here if:
(1) T ∈ W0, in which case the robot moves to T and
the algorithm halts, or (2) ∃V ∈ G1(W0) such that
d(V, T) < dreach, the leaving condition, in which case
the planner resets dLeave to d(V, T), and begins a new
MtG segment. If neither of these conditions hold, the
planner computes ~tx, the tangent to ∂O at x, and di-
rects the sensor to scan W (x,~tx). If Vloop ∈ W (x,~tx),
and Vloop ∈ the connected portion of ∂O containing
x, the robot has executed a loop—therefore, the goal
is unreachable, and the algorithm halts. Otherwise,
the planner computes V ∈ ∂O ∩ LTG(W (x,~tx)) such
that d(x, V) > d(x, V ′) ∀V ′ ∈ ∂O ∩ LTG(W (x,~tx)).
The robot records dreach, executes this subpath, then
begins a new BF step.

The Wedgebug algorithm thus deals with the lim-
ited FOV of the robot in an efficient manner. The
“virtual” submodes both take advantage of the lower
cost of panning the sensor array over actual motion,
while minimising the number of views required at each
step.

4 Sketch of Proof of Convergence

The proof of convergence of the Wedgebug algo-
rithm is analagous to the Tangent Bug convergence
proof [3]. The sketch of the proof is as follows: Each
robot motion can be characterised as a particular type
of motion segment. In turn, each type of segment
can be shown to have finite length. Following Ka-
mon, Rivlin, and Rimon, it can be shown that there
are a finite number of each type of segment, and thus
the path terminates after finite length. Due to space
limitations, we will detail here only the proof that BF
segments have finite length. The proofs for the other
types of motion segments are analagous.

Define the points Si to be the points where the plan-
ner switches from MtG to BF ; Li the point where the
BF leaving condition is met on obstacle i (switch point
from BF to MtG); and finally Qi, the point where a

loop is detected on obstacle i (Qi is within distance R
of Vloop, where R is the sensor range). Then, there are
two types of BF segments: [Si, Li], and [Si, Qi]. Let
Pi be the perimeter of obstacle Oi.

Lemma. BF segments are finite length.

Proof. Two cases: a) [Si, Li]. Let N designate the
point where the robot actually touches ∂Oi during
this BF segment. The path, then, consists of two
pieces: [Si, N], and [N,Li]. Since N , and Li both
lie on ∂Oi, the robot is traversing Oi in a fixed direc-
tion, and the robot has not detected a loop, we have
length([N,Li]) ≤ length([N,Qi]) ≤ length([N,Vloop]).
Further, since Vloop is defined as the sensed endpoint
of Oi in the opposite direction from traversal, we know
that the segments NVloop and VloopN do not overlap.
Therefore, since the obstacle perimeter, Pi, is finite,
we have length([N,Li]) ≤ length([N,Vloop]) ≤ Pi <
∞. We also have that d(Si, N) ≤ R, and R < ∞
by definition. Thus, this segment is bounded by
length([Si, Li]) ≤ d(Si, N)+length([N,Li]) ≤ R+Pi <
∞.

b) [Si, Qi]. Similarly, length([Si, Qi]) ≤ d(Si, N) +
Pi ≤ R+ Pi <∞.

5 Implementation and Results

An extended version of the Wedgebug algorithm,
called “RoverBug,” has been implemented on the JPL
Rocky7 prototype microrover (Fig 7), a research ve-
hicle designed to test technologies for future missions
[10]. The vehicle is roughly the same size as the So-
journer rover, with a few important differences which
will come into play in future rovers. (Refer to [5],
[10] for a fuller description.) Like Sojourner, Rocky7’s
mobility system is a rocker-bogie suspension, capa-
ble of surmounting obstacles 11

2 wheel diameters tall.
However, Rocky7 boasts three stereo pairs of cam-
eras for navigation (two body mounted, and one on
a deployable 1.2m mast) as opposed to Sojourner’s
body-mounted laser striping system. In addition, the
rover software features a recently-developed localisa-
tion algorithm utilising mast imagery to aid in dead-
reckoning [8].

Although the Wedgebug algorithm is an important
step, it still does not quite capture the complexities of
the real world. For instance, the rover is not a point
robot; a problem addressed in the “RoverBug” imple-
mentation by calculating the obstacles’ “silhouettes”:
the smallest polygon bounding the projection of each
SE(2) obstacle onto <2. Another issue is the fact that
the mast imagery can “see over” many obstacles: the

Figure 7: The Rocky7 Prototype Microrover, devel-
oped at JPL to test technologies for future missions.
It is pictured here in the JPL MarsYard, an outdoor
testing arena featuring simulated martian terrain.

resulting visibility polygon is not a star-shaped set,
and the LTG is much richer than in the development
in Section 3. Also, the mast is limited in its ability
to sense obstacles within 1m of the rover, since the
obstacle detection algorithm searches for steps in ele-
vation, not easy to detect while looking straight down
on the tops of rocks. Thus, care must be taken while
executing the subpaths.

In brief, the scenario is as follows: The rover is sit-
uated in unknown, rough terrain. The remote human
operator designates a goal, which sets in motion the
autonomous planner. The planner begins by directing
the mast to image towards the goal. Software on-board
produces a rangemap, detects obstacles, and computes
the obstacles’ convex hulls. The planner, which uses a
version of the theory described above, then computes
the obstacles’ silhouettes, and searches the resulting
LTG to produce the first subpath. The planner di-
rects the mast to look in the appropriate direction(s),
and incrementally builds and executes each subpath
until the goal is reached.

The implementation so far has been tested exten-
sively in the JPL MarsYard, as well as in natural ar-
royo terrain. Fig. 8 shows the results of one typical
run in the MarsYard. The goal was approximately
21m distant from the initial position, and R for each
wedge was 5m. As in Fig. 2, the convex hulls and sil-
houettes are computed within each wedge view, and a
subpath generated, which is executed before the next
wedge view is taken. The resultant multi-step path
runs from lower right to upper left.

6 Summary and Conclusions

The requirements for autonomous flight rovers for
planetary exploration provide compelling motivation
for work in streamlined sensor-based motion planning.
This paper continues the work begun in [5] to develop,
implement, and test a robust, practical path planner
for the Rocky7 prototype microrover. The Wedgebug
algorithm is described, along with a sketch of its proof
of convergence. A companion paper will describe in
more detail the “RoverBug” planner, the Wedgebug
extension implemented on Rocky7. These planners
significantly augment microrovers’ autonomous navi-
gation ability, which in turn will aid in producing suc-
cessful mobile robot missions.

Acknowledgments

The work described here was carried out at the Jet
Propulsion Laboratory, California Institute of Tech-
nology, under a contract with the National Aeronau-
tics and Space Administration. We would like to ac-
knowledge the Long Range Science Rover team and the
Mars Pathfinder Microrover Flight Experiment team,
for help, inspiration, and flight experience with a rover.
The authors would particularly like to thank Samad
Hayati, Andrew Mishkin, Clark Olson, Rich Petras,
and Todd Litwin for their invaluable assistance.

References

[1] E. Rimon and J. Canny, “Construction of C-space
Roadmaps From Local Sensory Data: What Should
the Sensors Look For?” in Proc. IEEE Conf. Robotics
Automat., 1994.

[2] H. Choset, Sensor Based Motion Planning: The Hi-
erarchical Generalized Voronoi Graph. Ph.D. thesis,
California Inst. of Tech., 1996.

[3] I. Kamon, E. Rimon, and E. Rivlin, “A New Range-
Sensor Based Globally Convergent Navigation Algo-
rithm for Mobile Robots,” CIS–Center of Intelligent
Systems 9517, Computer Science Dept., Technion, Is-
rael, 1995.

[4] J.-C. Latombe, Robot Motion Planning. Kluwer Aca-
demic Publishers, 1991.

[5] S. L. Laubach, J. W. Burdick, and L. H. Matthies,
“An Autonomous Path-Planner Implemented on the
Rocky7 Prototype Microrover,” in Proc. IEEE Conf.
Robotics Automat., 1998.

[6] A. Mishkin, J. Morrison, T. Nguyen, H. Stone, and
B. Cooper, “Operations and Autonomy of the Mars
Pathfinder Microrover,” in Proc. IEEE Aerospace
Conf., 1998.

Figure 8: Results from a multi-step run in the JPL
MarsYard. The path begins in the lower right corner
of the image, toward a goal approx. 21m distant in the
upper left. Each wedge depicts a rangemap produced
from mast imagery, and extends roughly 5m from the
imaging position. The obstacles are marked by a black
convex hull, and a grey silhouette. Each subpath ends
with an apparent “jag” in the path; these are not in
fact motions, but rather the result of the localisation
procedure run at the conclusion of each step. The
second line echoing the path is the rover’s telemetry
for the run.

[7] MGS Investigation Description and Science Require-
ment Document, JPL Document D-12487, February
1995.

[8] C. Olson and L. Matthies, “Maximum Likelihood
Rover Localisation by Matching Range Maps,” in
Proc. IEEE Conf. Robotics Automat., 1998.

[9] A. Stentz, “Optimal and Efficient Path Planning for
Partially-Known Environments,” in Proc. IEEE Conf.
Robotics Automat., 1994.

[10] R. Volpe, J. Balaram, T. Ohm, and R. Ivlev, “The
Rocky7 Mars Rover Prototype,” in Proc. IEEE/RSJ
Conf. Intelligent Robots and Sys., 1996.

